
A Streaming Graph System For High-Volume Complex Event Processing

1

A Streaming Graph
System For High-Volume
Complex Event Processing
Designed to find complex patterns within high volume data streams
composed of heterogeneous feeds without resort to time windows.

W H I T E P A P E R
1.1

2

Origins and Challenges
Stream processing and event-driven microservices are complicated! They’re
complicated because they combine the hardest problems from the database domain
with the hardest problems from the distributed systems domain.

At their core, both domains bring a long list of challenges that are due to the complex interplay of fundamental

mathematical or physical constraints that will inevitably surface in any system that stores data and has more

than one processor.

Researchers and developers spend entire careers developing novel

ways to overcome the constraints and tradeoffs of a single aspect

of these systems. Issues like consensus, concurrency, transactional

logic, clustering behavior, fault tolerance, scalability, balancing read

and write performance tradeoffs, and temporal ordering are all

subjects of research and innovation.

However, when the system in question is primarily concerned with

processing events as quickly as possible, one dimension in particular

takes on outsized importance: time.

Time and Distributed Systems
Processing vast amounts of event data, especially when the system is composed of many microservices that

rely on a strict order of operations, presents particular challenges. How does such a system handle out-of-

order data? What if data arrives hours, days, or months after it was generated? And how will such a system

know when to execute a query? When will the system be guaranteed to have all the data and in proper order?

Consider for instance the previously mentioned problem of when to query data. Systems today must

continuously query, or poll. Polling consumes system resources and increases query latency, both of which

impact not just the process or service in operation at the moment, but have the knock on effect of delaying

when the next service can guarantee that it has the necessary data.

Quine is an open
source streaming
graph software
project sponsored by
thatDot. Visit quine.io
to learn more.

A Streaming Graph System For High-Volume Complex Event Processing

3

A New Approach
What if we could eliminate many of the drawbacks of event

processing and database systems and build a system from the

ground up which confronts each of these fundamental challenges

from a holistic perspective and with the goals of modern

applications in mind? What if we could build a system to deliver

high-throughput, low-latency reads and writes over unbounded

data? One that is optimized to handle the constraints of distributed

systems and databases under high concurrency workloads?

After seven years of research and development, and with major funding from DARPA, this is exactly what the

team at thatDot has done. We call this system Quine.

Quine: Streaming Graph
for Real-time Applications
Quine is the open-source streaming graph and computation platform developed by
the engineers at thatDot. It bridges the worlds of distributed event stream processing
systems and databases.

Quine is designed to find complex patterns within high volume data streams composed of heterogeneous

feeds without resort to time windows. It eliminates the headaches involved with building and operating event-

driven microservices that enable real-time applications.

A Streaming Graph System For High-Volume Complex Event Processing

4

Core Design Choices and Their Implications

Three design choices define Quine, setting it apart from all event stream processing systems: a graph-

structured data model, an asynchronous actor-based graph computational model, and standing queries, Quine’s

solution to the challenges time presents in distributed systems.

Graph is the Universal Data Structure
Quine uses a property graph model to store and query real-time data. In this regard, it functions similarly to

graph databases; it even uses the most common graph query language, Cypher, to work with the data. In a

graph model, data is represented as nodes connected to each other by edges. Nodes hold key-value pairs of

“properties.” The edges have a direction and a label, and connect exactly two nodes.

Graph data structures represent data and its relationships in a way strikingly similar to how humans often think

and talk about data. The node-edge-node pattern in a graph corresponds directly to the subject-predicate-object

pattern common to languages like English. This makes graphs both powerful and easy to understand. When

visualized, a graph becomes endlessly intriguing.

Quine’s property graph structure puts relationships at the same level as the data values themselves by encoding

these relationships as edges. To discover relationships, one need only traverse a node’s edges. Traversing the

edge of a node to its neighbor is analogous to computing a join across tables in a relational data model.

1 2 3
Graph-Structured
Data Model

Actor-Based Graph
Computational Model

Standing Queries

DOG

WANTS

BONE

A Streaming Graph System For High-Volume Complex Event Processing

5

However, unlike relational databases, these relationships are essentially pre-computed joins. They make it easy

and extremely efficient to use the relationships in data—which is how Quine is able to find complex patterns

across both high-volume heterogeneous data streams and large historical data sets in real time.

A Graph Model for Asynchronous
Computation: the Actor Model
In Quine, the graph data model is paired with a graph computational model. Computation is implemented as

a native graph interpreter which occurs directly on the data. Ingested data, queries, or other instructions are

inserted into the graph and propagate through the network of nodes and edges to compute the appropriate

answer or trigger an action. The result is a fast and efficient process for highly parallel and fully asynchronous

computation that executes inside the graph.

Computation in Quine is built on the Actor Model using Akka. First described by Carl Hewitt in 1973, an actor is

a lightweight, single-threaded process that encapsulates state and communicates with the outside world only

through message passing. An actor receives messages in its mailbox and performs the corresponding small-

scale computation.

ID F_NAME.. .

12 Alice. . .
EMPLOYMENT

TITLE: VP
FROM: 2015

TO: 2017

EMPLOYMENT
TITLE: VP

FROM: 2017
TO: 2021

LOCATION
LID: 611

CITY: BOULDER
STATE: CO

EMPLOYMENT
TITLE: DIRECTOR

FROM: 2012
TO: 2015

EMPLOYMENT
TITLE: LEAD
FROM: 2011

TO: 2016

EMPLOYMENT
TITLE: MANAGER

FROM: 2016
TO: 2017

LOCATION
LID: 611

CITY: BOULDER
STATE: CO

COMPANY
ID_700
NAME:

EXAMPLE COM

Held Position
Held Position

Held Position Held Position

Employed By
Employed By

Employed By

Employed By

Employed By

Has Office In

Has Office In

Has Office In

Resides In

Resides In
PERSON

COMPANY

COMPANY
ID_512

NAME: ANY CO

COMPANY
ID_655
NAME:

EXAMPLE CO

PERSON
F_NAME BOB

512 091.. .

655 091

611

.. .

700 .. .

37 Bob

LID

611

102.. .

LID STATECITY

102 AliceFort Worth

Dallas

611 AliceBoulder

91 Bob

ID LID

Any Co

Sample
Co

Example
Com

NAME.. .

12

EMPLOYMENT

2012 2015512

37 2011 2016512

37 2016 2017655

12 2015 2017

Director

Lead

Manager

VP700

P_ID FROM TO TITLEC_ID

PERSON
F_NAME ALICE

LOCATION
LID: 091

CITY: DALLAS
STATE: TX

https://akka.io
https://arxiv.org/vc/arxiv/papers/1008/1008.1459v8.pdf

A Streaming Graph System For High-Volume Complex Event Processing

6

Actors are scheduled for computation concurrently with other actors. This makes the overall system

computation highly parallel. Under heavy load, the scheduler utilizes all available CPU cores automatically,

scheduling multiple separate actors to process their messages concurrently. Actor scheduling is done on a

highly-efficient “work-stealing” fork-join thread pool, running efficiently on a small machine, or taking advantage

of massive compute resources available on large machines. The net result is a fast, efficient, reactive system

that provides very high throughput for complex event processing.

Standing Queries Change Everything!
Standing queries are the central innovation at the heart of Quine. Built on the pillars of the graph data and

computational models, standing queries in Quine eliminate the time-based challenges otherwise inherent to

distributed systems. But the implications of what they mean for building complex systems with Quine reach far

beyond that.

Standing queries live inside the graph and automatically propagate their incremental results computed from

both historical data and incoming streaming data. Once matches are found, standing queries trigger actions

using those results (e.g. report results, execute code, transform other data in the graph, publish data to another

source). Because standing queries persist in the graph, incrementally updating partial results as new data

arrives, you are not just querying the past and present state, you are querying the future for any matches from

data yet to arrive.

MESSAGE HANDLING

Provides universal, event-driven,
incremental computation

Implements complex protocols

Mixed in to nodes

Easily extended

Built on the battle-tested Akka OSS
library

A Streaming Graph System For High-Volume Complex Event Processing

7

Out-of-order and Late-Arriving Data With No Time Windows

Quine’s unique standing query capability allows it to easily handle out-of-order data and late-arriving data.

A standing query is issued, ready to complete the sought-after pattern regardless of what order the data

arrives, even if delayed by hours or months. Because Quine lets the user focus on the structure of the data

instead of the order of events—even if data arrives entirely backwards—Quine will provide the correct answers

immediately when all the relevant data has arrived.

Instead of needing to continuously poll to determine if data has arrived, as you must with other event

processing systems, Quine’s state is continuously updated and each match triggers the appropriate action

automatically. Because data is stored on disk, retrieved and managed automatically, new data can easily be

combined transparently with very old data. Because results stream out immediately when a match is found,

standing queries eliminate the need to keep checking whether the data is complete—eliminating all the

operational complexity and wasted resource overhead that entails. Instead you can focus attention on the

business problems that led you to implement an event-driven architecture in the first place.

Performance and Flexibility
Quine’s architecture gives rise to some novel and quite powerful capabilities that directly address the tradeoffs

and limitations of existing distributed stream processing systems.

DATA POPULATES
THE GRAPH

MULTIPLE DATA
STREAMS

A

C
A C

A STANDING QUERY
DETECTS AND IMMEDIATELY

COMPLETES QUERY

{ }
A B C

Time

LATE ARRIVING OR
OUT OF ORDER DATA

IS FIT INTO THE RIGHT
PLACE IN THE GRAPH

RESULTS ARE DELIVERED
OR ACTIONS

TRIGGERED BY MATCH

B

Time

ANSWERS
& ACTIONSMATCH

IMMEDIATELY

A Streaming Graph System For High-Volume Complex Event Processing

8

High Read and Write Performance

Quine’s graph-based data and computational model also make it

possible to achieve both high read and high write performance.

High read performance is achieved through an approach we call

“semantic caching.” The graph data structure, and specifically

the edges between nodes, provides what are effectively

pre-computed joins for the entire data set, but they are

computed incrementally and the moment when it is most

efficient. With the connections in the data easily accessible,

they become the ideal clue to what other data is worth keeping

warm in the cache. Semantic caching is another key to Quine’s

high-throughput and low-latency computation made possible by

the unified graph representation of both data and computation.

With related data kept in memory, the result is a remarkably high

cache hit rate and great performance.

Quine’s actor-based compute model is also key to achieving

high write throughput. Since each node is an actor and has the ability to do arbitrary computation, Quine can

efficiently test whether updates or writes actually need to be stored on disk. If they do, Quine writes only the

minimum possible delta. This operation is then combined with a write-optimized data store like RocksDB or

Cassandra to deliver fast and efficient write operations.

Balance: schema-less flexibility with schema-full data structure

Quine’s unified graph provides the ideal sweet spot between flexibility and structure in the schema. You do not

always have to know the shape of all data before the first write, and yet can still query and compute on the data

efficiently and reliably.

Quine’s high-throughput
and low-latency
computation made
possible by the unified
graph representation
of both data and
computation

9

About Quine
Quine is the open source streaming graph project created by the team at thatDot, a Portland, Oregon-based
streaming event processing company. Released under the MIT with Commons Clause license in February
2022, Quine already boasts almost a dozen prominent users in the systems management, security, and CDN/
networking industries.

The decision to open source the Quine graph streaming engine underscores the thatDot team’s conviction that
the best infrastructure software thrives within an open, diverse community of contributors and that well-made
software freely available benefits everyone.

https://quine.io

Interested in trying Quine out for yourself?
Visit quine.io for downloads, recipes, docs, and blogs.

Quine Slack https://quine-io.slack.com/

Github https://github.com/thatdot/quine

Real-Time Tag Propagation
Across a Blockchain

CDN Cache Efficiency By
Segment

Kubernetes Event
Observability

The Ethereum blockchain is ingested live
from the Web, transactions are modeled

in the Quine streaming graph and a Quine
Standing Query propagates a “dirty money”

tag in real-time across the graph to trace
money laundering.

Ingest CDN Logs and calculate cache hit
rate in real-time by segments: country,
state, PoP, ASN to generate alerts or

dashboards.

Ingest Kube events and calculate state
by component, pod & service to generate

alerts & trace root causes.

https://quine.io/recipes.html

 Recipes Make it Easy to Try Quine Yourself

http://quine.io
https://join.slack.com/t/quine-io/shared_invite/zt-12rxshfxh-iym_4neE9yuBO2NsNEvQwQ
https://github.com/thatdot/quine
https://quine.io/recipes.html

